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Motivation

GPGPU (General Purpose programming on Graphics
Processing Units) is no longer an obscure area

Most consumer hardware is now fully programmable in C

No need to be a specialist to tap into the computing power of
GPUs

What if malware authors start coding on GPUs ?
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NVIDIA's Compute Uni�ed Device Architecture

Requires recent NVIDIA hardware with a CUDA driver

Easily programmable with an extension of the C language

The device code is compiled to an assembly intermediate
language, PTX and then assembled in the cubin �le format
(undocumented)

Here is the simpli�ed compilation process:
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AMD's Stream Computing

Requires recent ATI/AMD hardware with a Stream Computing
driver

Easily programmable with an (other) extension of the C
language

The device code is compiled to an (other) assembly
intermediate language, AMD IL
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Apple's OpenCL

Submitted as a standard by Apple, supported by everybody
except Microsoft

Will be shipped with Mac OS X Snow Leopard

No reference/documentation for the moment

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

CUDA
Stream Computing
OpenCL
Larrabee

Intel's Larrabee

Announced by Intel at SIGGRAPH 2008

Based on the x86 architecture plus Larrabee-speci�c extensions

Will also come in the form of an add-in card managed by an
operating system driver

No reference/documentation for the moment
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Algorithm Hiding

The code on the former slide is part of the Kraken botnet

It is the algorithm generating the list of C&C servers that the
bots try to contact

Once this list is known, the servers can be shut down and the
botnet can be in�ltrated

This is the kind of algorithms that might end up being
executed on GPUs
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Disassembling

GPGPU software comes in the form of fat binaries (CUDA
terminology), i.e. native executables with embedded device
code

The goal is to extract the device code and obtain a dump of
the instructions
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Disassembling

Depends heavily on the underlying GPGPU technology

Ability to recover the device-speci�c representation and/or the
intermediate language representation

Usually very di�erent from x86 assembly
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Disassembling

Sample PTX code:
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Disassembling

Sample AMD IL code:
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Debugging

Short version: GPUs do not support hardware debugging

This means: no breakpoints, no single-stepping, no
debugger-based tracing

However, developers want to debug applications, so the answer
is the emulation mode...

An excerpt of the CUDA documentation:
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Debugging

Short version: GPUs do not support hardware debugging

This means: no breakpoints, no single-stepping, no
debugger-based tracing

However, developers want to debug applications, so the answer
is the emulation mode...

And an excerpt of the Stream Computing documentation:
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Debugging

So developers can debug their applications if they compile
them with an emulation option

This means no debugging without the source code

But at least, we have emulation, right ?
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Emulation

Let's read again the CUDA documentation: �When compiling

an application in this mode (using the -deviceemu option), the

device code is compiled for and runs on the host�

This means that no GPU code is produced, everything is
compiled for the CPU

Therefore, no emulation without the source code

This is bad news for malware analysts, because having a
full-software GPU emulator would allow the use of breakpoints,
single-stepping and tracing (as with Bochs)
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Motivation

Packing is a software protection method that generates code
dynamically (turns data into code)

To unpack a program, you generally have to set a breakpoint
at the entry point of the dynamically created code or to
emulate the program and match the current address with the
written addresses

No debugging in GPUs + no emulators (yet) = really strong
packing
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Based on the Underlying Hardware

The lowest-level target but still hardware-independant target
for execution is the intermediate language (such as PTX or
AMD IL)

To program self-modifying code, we need data-transfer
instructions and control-�ow instructions with the same targets

But...
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Based on the Underlying Hardware

Excerpt of the PTX documentation:
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Based on the Underlying Hardware

And an excerpt of the AMD IL documentation:
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Based on a Virtual Machine

There seems to be no natural / documented way to write
self-modifying code with PTX or AMD IL

However, even if the underlying environment does not support
self-modifying code, it is still possible to develop a virtual
execution environment in device code

Since we control the virtual execution environment, everything
is possible, including self-modifying code

Not malware speci�c, DRM systems may use it in the future
(GPU-Themida and GPU-VMProtect ?)
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Conclusion

Current GPGPU technologies o�er programmable hardware
black boxes

If one of these technologies becomes a standard, available by
default, it will be used by malware and DRM

GPU-based packers will be particularly e�cient due to the lack
of hardware debugging and emulators
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