GPU Powered Malware

Daniel Reynaud

LORIA - Nancy - France

Ruxcon 2008

Daniel Reynaud GPU Powered Malware

Motivation

e GPGPU (General Purpose programming on Graphics
Processing Units) is no longer an obscure area

@ Most consumer hardware is now fully programmable in C

@ No need to be a specialist to tap into the computing power of
GPUs

e What if malware authors start coding on GPUs ?

Daniel Reynaud GPU Powered Malware

GPGPU Technologies CUDA

Stream Computing
OpenCL

Larrabee

Outline

@ GPGPU Technologies
e CUDA
@ Stream Computing
@ OpenCL
o Larrabee

Daniel Reynaud GPU Powered Malware

GPGPU Technologies CUDA

Stream Computing
OpenCL

Larrabee

NVIDIA’s Compute Unified Device Architecture

@ Requires recent NVIDIA hardware with a CUDA driver

o Easily programmable with an extension of the C language

@ The device code is compiled to an assembly intermediate
language, PTX and then assembled in the cubin file format
(undocumented)

Here is the simplified compilation process:

ﬂ»[nvopence }&ﬁ ptxas]Lb"L[fatbin

£ nvee fathin

¥

bt cpp

Daniel Reynaud GPU Powered Malware

GPGPU Technologies CUDA

Stream Computing
OpenCL

Larrabee

AMD's Stream Computing

@ Requires recent ATI/AMD hardware with a Stream Computing
driver

e Easily programmable with an (other) extension of the C
language

@ The device code is compiled to an (other) assembly
intermediate language, AMD IL

Daniel Reynaud GPU Powered Malware

GPGPU Technologies

CUDA

Stream Computing
OpenCL

Larrabee

Apple’'s OpenCL

@ Submitted as a standard by Apple, supported by everybody
except Microsoft

@ Will be shipped with Mac OS X Snow Leopard
o No reference/documentation for the moment

‘Mac OS X Show Leopard

Core innovation.

OpenCL

Anather powerful Snow Leopard technalogy, OpenCL (Open
Computing Language), makes it possible for developers to efficienthy
tap the vast gigaflops of computing power currently lacked up in the
graphics processing unit (GPL). With GPUs approaching processing
speeds of a trillion operations per second, they're capable of
considerably more than just drawing pictures. OpenCL takes that
powsr and redirecs it for general-purpose computing

Daniel Reynaud GPU Powered Malware

GPGPU Technologies CUDA

Stream Computing
OpenCL

Larrabee

Intel's Larrabee

@ Announced by Intel at SIGGRAPH 2008
@ Based on the x86 architecture plus Larrabee-specific extensions

e Will also come in the form of an add-in card managed by an
operating system driver

@ No reference/documentation for the moment

Daniel Reynaud GPU Powered Malware

How could that be used in a malware ?

Outline

© How could that be used in a malware ?

Daniel Reynaud GPU Powered Malware

Quick Answer

loop_generate_next_character:

loop
(from 7 to 12 times)

quit_the_loop:

mov
ror
and
add
push
cdq
pop
idiv
add
test
jle
mou

imul
add
nou
ror
and
push
pop
cdq
idiv
lea
add

push
call
lea
push
lea
call
lea
call
dec
jnz

push
lea
call
mou
push
pop
cdq
idiv
lea
push
call

(credits: ThreatExpert.com)

ebx, eax ; create a seed in EBX

eax, 8

eax, esi

eax, ecx ; prepare large number in EAX

6
T— a reminder after dividing by 6 is a number from 0 to §

ecx-
ecx s EDX gets a random length from 8 to 5
edx, 7—_ ; EDX gets a random length from 7 to 12

edx, eds “‘ﬁ\\\add 7o that the
short quit the loop domain name will have a variable length from 7 to 12

[ebp+counter], edx —— counter = 7.12

CODE XREF: Generate_DOMAIN_NAME+10ALj

ebx, 41C64E6Dh ; progress the seed

ebx, edi 5 add EDI=12435

eax, ebx s move the seed into EAX

eax, 8

eax, esi ; ESI=32767

26

ecx : ECX = 26

ecx s get a reminder from division by 26

ecx, [ebp+tenp]

dl, "a‘ ; EDX get a random number from 8 to 25
; use it as offset from the character 'a’

edx

take_letter_at_that_offset

eax, [ebp+temp] N -
eax by using a random number from 0 to 25 and

ecx, [ebp+uar_18] g it as an offset from ‘a’, the code simply
add_the_character picks up a random ASCII character from ‘a” to ‘z’.
ecx, [ebp+tenp]

_delete

[ebp+counter] ; decrement the counter

short loop_generate_next_character ; progress the seed

; CODE XREF: Generate_DOMATN_NAME+CDT]
offset a_ @ H
ecx, [ebprtenp] “once the domain name of C&C is generated,
_streat——7H o " o
R — add dot (".") to it
T — — and then append one of 7 suffixes
ecx (first 3 of them are doubled to double their
chance to be picked up;

thus, the list has 10 entri

ecx
ecx, [ebprvar_28]
ds :randon_domain_suffix_10[edx*h]
_strcat

How could that be used in a malware ?

Algorithm Hiding

@ The code on the former slide is part of the Kraken botnet

@ It is the algorithm generating the list of C&C servers that the
bots try to contact

@ Once this list is known, the servers can be shut down and the
botnet can be infiltrated

@ This is the kind of algorithms that might end up being
executed on GPUs

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Outline

© Reverse Engineering
@ Disassembling
@ Debugging
@ Emulation

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Disassembling

e GPGPU software comes in the form of fat binaries (CUDA
terminology), i.e. native executables with embedded device
code

@ The goal is to extract the device code and obtain a dump of
the instructions

program.exe

PTX
AMD IL
processor-specific code

device device
code code

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Disassembling

@ Depends heavily on the underlying GPGPU technology

o Ability to recover the device-specific representation and/or the
intermediate language representation

@ Usually very different from x86 assembly

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Disassembling

Sample PTX code:

58 .entry __globfunc_ ZekernelPel
59 i

60 Lreg LULE Srhegs:

61 LrEg Lu32 sra2d:

62 creg .pred spdilv;

63 .param .u32 __cudaparm__ globfunc_ ZtkernelPei_a_d:
64 .param 532 _cudaparm__ globfunc_ Z6kernelPei_n:

65 Jlos 14 61 O

66 §LEB1__ globfuns_ Z6kernelPoi:

67 Jlos 14 41 0

68 ld.paraw.u32 %r1, [_cudaparm__globfunc_ Z6kernelPei_a d]: // id:77 _ cudaparm__ globfunc_ Z6kernelPei_a_d+0x0
69 mov.s32 Srz, sri: 77

70 Jloe 14 23 0

71 ld.global.ss &r3, [5ri+0]: 7/ id:7s

7z mov.s32 srd, sri: 77

73 mov.u3z srS, O: 77

74 setp.eq.s32 &pl, &r3, irS: 1

75 @%pi bra SLt_0_38: 17

76 ld.const.s8 4r6, [_ constant43z+0]: // id:78 g_C10
77 setp.ne.s32 &pz, sr6, sr3; 1

75 Bepz bra §Lc_0_an; 1

75 mov.usz sr7, _ constantesz; //

80 $L_0_za:
81 //<loop> Loop hody line 24
a2 Jloe 13 23 0

83 edd.usz =rz, =z,

I

Daniel Reyn GPU Powered Malware

Disassembling
Reverse Engineering Debuggin
Emulation

Disassembling

Sample AMD IL code:

GPU ShaderAnalyzer - DX HLSL 1=
File Edit Help
Source Code ‘ Object Code
BN - ook _check Farmst |1L Assembly -
HLSL Compiler
1/ Enter your shader in this wit ret ~
2 hernel veid hello_brok_checkig|| 10098 Bronkt =l tune 35
&l ([™ Enable Fast Math (Less Accurate) IESE2E8 a5, EEETSRNODNEZ
@ if (input > val) if_logicalnz rZ€8.x000
5 { [Disable Address Virtualization mov r266.x_, 11Z.x000
& sutput = 1.0f; else
7 3 mov r266.x__, 10.x000
& else endif
3 1 rer
10 sutpur = 0.0f; func 36
1 Macro Defintions wov £l7.x__, 10.x000
1z} mov rlS.xy__, rZ6%.xy00
Symbol Walue call z
Right-click ko add macros. moE-ECTe. ELo =000
nov r273. r276.x000
nov r265. r273.x000
v — nov r267. rz71.x000
call 35
Constant Walus mov rZ74.x , rZ66.x000
No bodl consts. nov rz7s. rZRxmn
mov r2?5. v . L0.0x00
< > >

Daniel Reyn GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Debugging

@ Short version: GPUs do not support hardware debugging

@ This means: no breakpoints, no single-stepping, no
debugger-based tracing

@ However, developers want to debug applications, so the answer
is the emulation mode...

An excerpt of the CUDA documentation:
4.5.2.9 Debugging using the Device Emulation Mode

The programming environment does not include any native debug support for code
that runs on the device, but comes with a device emulation mode for the purpose of
debugging. When compiling an application in this mode (using the ~deviceemu
option), the device code is compiled for and runs on the host, allowing the
programmer to use the host’s native debugging support to debug the application as
1f 1t were a host application. The preprocessor macro _ DEVICE_EMULATION is
defined i this mode. All code for an application, mcluding any hibrasies used, must
be compiled consistently either for device emulation or for device execution

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Debugging

@ Short version: GPUs do not support hardware debugging

@ This means: no breakpoints, no single-stepping, no
debugger-based tracing

@ However, developers want to debug applications, so the answer
is the emulation mode...

And an excerpt of the Stream Computing documentation:

X S ebugging

When debugging an application, debugging happens on the generated C++
source, not on the original Brook+ source. For a complete example, see
Section 2.4, “Example of Generated C++ Code for sun.br,” page 2-12.

There is no hardware debugging of stream kernels (for example:
_sum cal desc); itis not possible to step through the kernel code. The kernel
inputs and outputs can be inspected (before a streamRead and after a
streamWrite). Kernels can be written so that intermediate data can be output to
streams and inspected.

Alternatively, kernels can be stepped through and debugged as usual using the
CPU emulation mode (for example: _ sum cpuand _ sum cpu inner).

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Debugging

@ So developers can debug their applications if they compile
them with an emulation option

@ This means no debugging without the source code

@ But at least, we have emulation, right ?

Daniel Reynaud GPU Powered Malware

Disassembling
Reverse Engineering Debugging
Emulation

Emulation

o Let's read again the CUDA documentation: “When compiling
an application in this mode (using the -deviceemu option), the
device code is compiled for and runs on the host”

@ This means that no GPU code is produced, everything is
compiled for the CPU

@ Therefore, no emulation without the source code

@ This is bad news for malware analysts, because having a
full-software GPU emulator would allow the use of breakpoints,
single-stepping and tracing (as with Bochs)

Daniel Reynaud GPU Powered Malware

Packing

Outline

@ Packing

Daniel Reynaud GPU Powered Malware

Packing

Motivation

@ Packing is a software protection method that generates code
dynamically (turns data into code)

@ To unpack a program, you generally have to set a breakpoint
at the entry point of the dynamically created code or to
emulate the program and match the current address with the
written addresses

@ No debugging in GPUs 4+ no emulators (yet) = really strong
packing

Daniel Reynaud GPU Powered Malware

Packing

Based on the Underlying Hardware

@ The lowest-level target but still hardware-independant target
for execution is the intermediate language (such as PTX or
AMD IL)

@ To program self-modifying code, we need data-transfer
instructions and control-flow instructions with the same targets

e But...

Daniel Reynaud GPU Powered Malware

Packing

Based on the Underlying Hardware

Excerpt of the PTX documentation:

Chapter 7. Instruction Set

Table 49. Control Flow Instructions: BRA

BRA Branch to a target and continue execution there.
Syntax bra[.uni] target; // target is a label
bral.uni] a; // indirect branch through register ‘a’
Description Continue execution at the target. Conditional branches are specified by using a guard
predicate
Semantics pc = target;
pe = a;
Notes A bra is assumed to be divergent unless the .unl suffix is present, indicating that the
branch is guaranteed to be non-divergent.
Release Notes Indirect branch through a ragister is unimplemanted.
Examples bra.uni L_exit; // uniform unconditional jump
@g bra L23; // conditional branch
mov.b32 %z, Done;
bra ir; // indirect branch

Daniel Rey GPU Powered Malware

Packing

Based on the Underlying Hardware

And an excerpt of the AMD IL documentation:

AMD COMPUTE ABSTRACTION LAYER (CAL) TECHNOLOGY

Unconditional CALL

Instructions CALL

Syntax

Description CALL pushes the address of the next instruction in the kernel onto the return address stack
and transfers control to the FUNC block identified by <integer label>. CALLs can be nested
up to 32 levels deep. If the return address stack already contains 32 addresses, the CALL is
skipped and execution continues at the next instruction in the kernel. Recursion is permitted.

Format 0-input, 0-output.
Opcode Token Field Name Bits Description
1 15:0 IL_OP_CALL
29:18 Must be zero.
resent 30 Must be zero.
resent 31 Must be zero.

2 Must be zero

3 Unsigned integer representing label of the subroutine

Related CALL_LOGICALZ, CALL_LOGICALNZ.

Daniel Rey GPU Powered Malware

Packing

Based on a Virtual Machine

@ There seems to be no natural / documented way to write
self-modifying code with PTX or AMD IL

@ However, even if the underlying environment does not support
self-modifying code, it is still possible to develop a virtual
execution environment in device code

@ Since we control the virtual execution environment, everything
is possible, including self-modifying code

@ Not malware specific, DRM systems may use it in the future
(GPU-Themida and GPU-VMProtect ?)

Daniel Reynaud GPU Powered Malware

Packing

Based on a Virtual Machine

program.exe

device code

custom bytecode
and data

v

virtual CPU

Daniel Reynaud GPU Powered Malware

Conclusion

Outline

© Conclusion
Daniel Reynaud GPU Powered Malware

Conclusion

Conclusion

@ Current GPGPU technologies offer programmable hardware
black boxes

@ If one of these technologies becomes a standard, available by
default, it will be used by malware and DRM

@ GPU-based packers will be particularly efficient due to the lack
of hardware debugging and emulators

Daniel Reynaud GPU Powered Malware

	GPGPU Technologies
	CUDA
	Stream Computing
	OpenCL
	Larrabee

	How could that be used in a malware ?
	Reverse Engineering
	Disassembling
	Debugging
	Emulation

	Packing
	Conclusion

