
GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

GPU Powered Malware

Daniel Reynaud

LORIA - Nancy - France

Ruxcon 2008

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Motivation

GPGPU (General Purpose programming on Graphics
Processing Units) is no longer an obscure area

Most consumer hardware is now fully programmable in C

No need to be a specialist to tap into the computing power of
GPUs

What if malware authors start coding on GPUs ?

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

CUDA
Stream Computing
OpenCL
Larrabee

Outline

1 GPGPU Technologies
CUDA
Stream Computing
OpenCL
Larrabee

2 How could that be used in a malware ?

3 Reverse Engineering
Disassembling
Debugging
Emulation

4 Packing

5 Conclusion

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

CUDA
Stream Computing
OpenCL
Larrabee

NVIDIA's Compute Uni�ed Device Architecture

Requires recent NVIDIA hardware with a CUDA driver

Easily programmable with an extension of the C language

The device code is compiled to an assembly intermediate
language, PTX and then assembled in the cubin �le format
(undocumented)

Here is the simpli�ed compilation process:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

CUDA
Stream Computing
OpenCL
Larrabee

AMD's Stream Computing

Requires recent ATI/AMD hardware with a Stream Computing
driver

Easily programmable with an (other) extension of the C
language

The device code is compiled to an (other) assembly
intermediate language, AMD IL

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

CUDA
Stream Computing
OpenCL
Larrabee

Apple's OpenCL

Submitted as a standard by Apple, supported by everybody
except Microsoft

Will be shipped with Mac OS X Snow Leopard

No reference/documentation for the moment

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

CUDA
Stream Computing
OpenCL
Larrabee

Intel's Larrabee

Announced by Intel at SIGGRAPH 2008

Based on the x86 architecture plus Larrabee-speci�c extensions

Will also come in the form of an add-in card managed by an
operating system driver

No reference/documentation for the moment

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Outline

1 GPGPU Technologies
CUDA
Stream Computing
OpenCL
Larrabee

2 How could that be used in a malware ?

3 Reverse Engineering
Disassembling
Debugging
Emulation

4 Packing

5 Conclusion

Daniel Reynaud GPU Powered Malware



Quick Answer (credits: ThreatExpert.com)



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Algorithm Hiding

The code on the former slide is part of the Kraken botnet

It is the algorithm generating the list of C&C servers that the
bots try to contact

Once this list is known, the servers can be shut down and the
botnet can be in�ltrated

This is the kind of algorithms that might end up being
executed on GPUs

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Outline

1 GPGPU Technologies
CUDA
Stream Computing
OpenCL
Larrabee

2 How could that be used in a malware ?

3 Reverse Engineering
Disassembling
Debugging
Emulation

4 Packing

5 Conclusion

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Disassembling

GPGPU software comes in the form of fat binaries (CUDA
terminology), i.e. native executables with embedded device
code

The goal is to extract the device code and obtain a dump of
the instructions

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Disassembling

Depends heavily on the underlying GPGPU technology

Ability to recover the device-speci�c representation and/or the
intermediate language representation

Usually very di�erent from x86 assembly

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Disassembling

Sample PTX code:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Disassembling

Sample AMD IL code:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Debugging

Short version: GPUs do not support hardware debugging

This means: no breakpoints, no single-stepping, no
debugger-based tracing

However, developers want to debug applications, so the answer
is the emulation mode...

An excerpt of the CUDA documentation:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Debugging

Short version: GPUs do not support hardware debugging

This means: no breakpoints, no single-stepping, no
debugger-based tracing

However, developers want to debug applications, so the answer
is the emulation mode...

And an excerpt of the Stream Computing documentation:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Debugging

So developers can debug their applications if they compile
them with an emulation option

This means no debugging without the source code

But at least, we have emulation, right ?

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Disassembling
Debugging
Emulation

Emulation

Let's read again the CUDA documentation: �When compiling

an application in this mode (using the -deviceemu option), the

device code is compiled for and runs on the host�

This means that no GPU code is produced, everything is
compiled for the CPU

Therefore, no emulation without the source code

This is bad news for malware analysts, because having a
full-software GPU emulator would allow the use of breakpoints,
single-stepping and tracing (as with Bochs)

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Outline

1 GPGPU Technologies
CUDA
Stream Computing
OpenCL
Larrabee

2 How could that be used in a malware ?

3 Reverse Engineering
Disassembling
Debugging
Emulation

4 Packing

5 Conclusion

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Motivation

Packing is a software protection method that generates code
dynamically (turns data into code)

To unpack a program, you generally have to set a breakpoint
at the entry point of the dynamically created code or to
emulate the program and match the current address with the
written addresses

No debugging in GPUs + no emulators (yet) = really strong
packing

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Based on the Underlying Hardware

The lowest-level target but still hardware-independant target
for execution is the intermediate language (such as PTX or
AMD IL)

To program self-modifying code, we need data-transfer
instructions and control-�ow instructions with the same targets

But...

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Based on the Underlying Hardware

Excerpt of the PTX documentation:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Based on the Underlying Hardware

And an excerpt of the AMD IL documentation:

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Based on a Virtual Machine

There seems to be no natural / documented way to write
self-modifying code with PTX or AMD IL

However, even if the underlying environment does not support
self-modifying code, it is still possible to develop a virtual
execution environment in device code

Since we control the virtual execution environment, everything
is possible, including self-modifying code

Not malware speci�c, DRM systems may use it in the future
(GPU-Themida and GPU-VMProtect ?)

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Based on a Virtual Machine

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Outline

1 GPGPU Technologies
CUDA
Stream Computing
OpenCL
Larrabee

2 How could that be used in a malware ?

3 Reverse Engineering
Disassembling
Debugging
Emulation

4 Packing

5 Conclusion

Daniel Reynaud GPU Powered Malware



GPGPU Technologies
How could that be used in a malware ?

Reverse Engineering
Packing

Conclusion

Conclusion

Current GPGPU technologies o�er programmable hardware
black boxes

If one of these technologies becomes a standard, available by
default, it will be used by malware and DRM

GPU-based packers will be particularly e�cient due to the lack
of hardware debugging and emulators

Daniel Reynaud GPU Powered Malware


	GPGPU Technologies
	CUDA
	Stream Computing
	OpenCL
	Larrabee

	How could that be used in a malware ?
	Reverse Engineering
	Disassembling
	Debugging
	Emulation

	Packing
	Conclusion

