
Hacking Modbus Enabled Devices

SCADA Penetration Testing

RUXCON ‘08

Daniel Grzelak [daniel.grzelak@sift.com.au]



2

About Me

• SIFT

– http://ww.sift.com.au/

– Independent information security services

• Daniel Grzelak

– daniel.grzelak@sift.com.au

– Consultant and “breakererer of stuff”

– Not a SCADA engineer



3

About this Presentation

• Seeks to standardise and illuminate Modbus testing

– Release a toolkit to aid testing

– Maybe have some fun along the way

• Based on

– Research and experience

• All screenshots in the presentation are from live Internet systems!

– But also assumptions and conjecture

• What you won’t get

– 0-day exploits



4

Outline

i. Brief introduction to Modbus

ii. Motivation for this presentation

iii. Modbus Internet landscape

iv. Penetration testing framework and toolkit

v. Conclusions and acknowledgements

vi. Questions



5

SCADA

• Supervisory Control and Data Acquisition

• AKA Controlling cool stuff

– Manufacturing plants

– Traffic signaling

– Water supply and filtration

– Power generation

• Infinite

– Fun (for hackers)

– Damage (for crackers)

– Headaches, fear, and pain (for controllers)

• Difficult to research



6

Modbus

• Open standard
– www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

– www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

• Application layer protocol

– For communicating with automation devices

– Was a serial protocol but now TCP/IP enabled

– Simple and widely deployed

• Useful Terminology

– RTU – remote terminal unit (slave)

– MTU – master terminal unit

– PLC – programmable logic controller



7

Modbus/TCP



8

Modbus/TCP Basics

• Synchronous request-response protocol
– Max packet size of 260 bytes

– Response function code = request function code (+0x80 error)

• Components
– Transaction ID usually incremented

– Protocol ID always 0

– Length

– unit/slave ID = 0 - 255

– function code = 1 – 255

• Protocol number restrictions are always fun!



9

Common Functions



10

Current State of Modbus Pen Testing

• Process Control Systems Forum (PCSF) Annual Meeting 
[March, 2007]
– Setup honeynet with simulated Modbus PLC

– Attendees given access to wireless AP hosting honeynet and told 
go wild

– “One attendee performed 913 function code 1 reads to an 
unavailable address/reference (39999)…”

– IDS identified the following attacks:

• Unauthorised read

• Unauthorised write

• Incorrect packet length (finally something fun)

• https://www.pcsforum.org/library/files/1174588590-PCSF_SCADA_Honeynet.pdf



11

Current State of Modbus Pen Testing

• Nessus
– Modbus/TCP Coil Access - Modbus uses a function code of 1 

to read "coils " in a Modbus slave. The ability to read coils may 
help an attacker profile a system and identify ranges of registers 
to alter via a "write coil" message. 

– Modbus/TCP Discrete Input Access - The Modbus protocol 
function code of 2 reads discrete inputs from Modbus slaves. The 
ability to read discrete inputs may help an attacker profile a 
system. 

– Modicon Modbus/TCP Programming Function Code Access -
Finds hosts with the proprietary Modbus/TCP function code 126 
active

– Little more than reading and writing data values �
• http://blog.tenablesecurity.com/2006/12/nessus_3_scada_.htm



12

Current State of Modbus Pen Testing

• ModScan by Mark Bristow - Defcon 2008

– Scanner presented by Mark Bristow at Defcon 2008

– “Modscan Scans the IP range provided for open TCP 502”

– “When an open port is found it finds the SID via brute force”

– Little more than “nmap –p 502” �

• http://onelittlewindow.org/blog/wp-

content/uploads/2008/08/modscan_defcon_2008.pdf

• Clearly something more in-depth is needed!



13

Future of Modbus Pen Testing

• Process

– Identification

– Fingerprinting

– Vulnerability identification

– Exploitation

– Control

• Toolkit

– Automation

– Interaction

– Analysis



14

But First, a Little Fun

• Show of hands please…

– Who thinks it’s a good idea to make Modbus devices Internet 
accessible?

– Who thinks it’s a good idea to attach web interfaces to Modbus
devices?



15

What is out there?

• Verified

– Electrical generators

– Electrical meters

– Cameras

– Thermometers

– Ovens ☺

• Theorised

– Everything mechanical

• Water, waste, power, chemical, manufacturing, traffic 
control…



16

Live on the Internet



17

Identification

• …removed



18

Identifying Slaves

• An open port does not indicate a single device

– But when it does, usually slave id = 1

• Read coils/registers/inputs

– If read address is not valid

• Do not respond; or

• Return illegal data address (E2) �

– Illegal data address response require further investigation

• Report slave id (F17)

– Serial line only and usually reports illegal function (E1)



19

Identifying Gateways

• Modbus gateways

– Connect several devices via a single interface

– Often translate serial to TCP

• Can be identified through exceptions

– Gateway path unavailable (E10)

• By far the most common

– Gateway target device failed to respond (E11)



20

Fingerprinting

• Fingerprinting Modbus devices can be difficult

– Modbus is very simple

– Modbus devices return numbers

– There are an infinite number of devices

• Operating system

– Run nmap

• Device type/model

– Web interface? Get lucky?

• Purpose

– Review environment



21

DNS

• DNS is so helpful!

– internoc-generator-ctrl.###.edu

– labs.###energy.###

– electric.###.edu

– ###.chem.eng.###.edu.###

– ###.###.gov

– env-plc.###.edu.###

– factorycast1.###.fr

– meter-master-eb1.###.edu.###

– hvac3.###.###.edu

• Often an insight into device type and purpose



22

Web

• Turns out, using the web is the often the easiest way

– 80% of Modbus/TCP devices have web interfaces

– Other research shows most devices run Windows 2k



23

Web



24

Environment

• Interface found on adjacent IP address



25

Vulnerability Identification

• Send the packets and they will come

– Issue “activation” can be automated

– Issue “capturing” can only sometimes be automated

• Device responses

– Differ between device types/configurations

– Some tests elicit normal response (FC=FC)

– Some don’t respond at all and require manual investigation

– Some give various exceptions



26

Modscan

• Remember those protocol element restrictions in slide 8 
that looked really juicy…

– Modscan attempts to test for these

• Tests configurable via XML

• Currently supports the following classes of test

– Undefined function codes

– Reserved functions codes

– Invalid data lengths

– Invalid packets

– Serial-only functions



27

Sample Issues

• Write multiple registers (F15) with a high starting address

– Devices may corrupt memory or just throw and exception



28

Sample Issues

• Send a packet with function code 0

– Device might throw an exception (E1)

– Some devices might go into undefined states

• Write undefined value to coil

– Write 0xFAFA (for example)

– By specification these should be ignored

– Devices may corrupt memory or just throw and exception



29

Sample Issues

• Send a packet with length field of 0

– No space for unit identifier or function code!

– Some devices might go into undefined states

• Send a packet with length field of 0xFFFF

– PDU exceeds maximum allowable length

– May cause memory corruption

– Some devices might go into undefined states



30

ModScan Demo

• Demonstration scenario

– Your SCADA engineering team has simulated a Modbus device

– You want to test its security



31

Diagnostics

• SC01 - Restart communications option

– Restart and perform confidence tests

– Short term denial of service 

• SC04 - Force listen only mode

– Stop device from processing messages

– Long term denial of service – till SC01 is received 

• SC14 - Return slave message count

– Number of valid messages processed since last restart

– Useful for profiling device usage

• Identify optimal times for testing



32

Moddiag

• Tool for accessing Modbus diagnostic functions

– Supports all diagnostic function codes and sub codes

– Non-intrusive

– Great for profiling

– Also useful for fingerprinting

• Moddiag found a minor bug in a SCADA product during 
development



33

Modcli and Modmut

• Modcli

– Generates stream of valid Modbus packets

– To be used in conjunction with a mutation fuzzer

– Can also be used as DoS/stress tester

• Modmut (Not yet written �)

– Modbus mutation fuzzer proxy

– Sits between modcli and the target

– Randomly changes packet field values



34

My Fuzzing Results

• Not many �

• Testing software parses the protocol safely
– Wireshark

– Modbus Slave

– SimSCADA

• Real devices unlikely to be so robust
– No evidence to support this view

– Anyone want to donate some devices?



35

Modping

• Probably the most useful tool in the suite

• Generates custom Modbus packets

– So we can poke around

– Decomposes responses only up to function code

– Use in conjunction with Wireshark



36

Exploitation

• Exploitation ranges in difficulty

– Accessing functions is trivial

– Memory issues are going range per device

– Lots of “dark ages” issues

• Generic devices are usually programmable by the 

consumer

– Usually in memory unsafe languages

– Even if they aren’t exploitable by default, that can change



37

Doing a Little Research

• Manuals are a great source of information

– Who here believes default passwords get changed?



38

Web Logins

• Applets…



39

Web interfaces



40

Zero Read/Write

• Read/write multiple registers (F23) requires a non-zero 
read and non-zero write

– Some devices may not handle zero reads/writes well

– Can only do this with modping



41

Zero read/write

• modping -t 10.1.1.1 -p 502 -x 20 -o 0 -f 23 -l 11 
-d 0x000000000000000000 



42

Control

• End goal of the penetration test

– Control devices by writing coils and registers

– Sometimes through extended functions codes

– This action should not be taken lightly

• “Somebody is gonna get a hurt real bad…”

• Control is dependant on the device

– 2 types of device – generic and specific

– For specific device the best source of information is the manual

– Generic programmable devices will require internal 
documentation

– Traffic can be observed to gain “some” insights



43

Example Instruction Set



44

Modread

• Tool for reading data from a device

– Read coils (FC1)

– Read discrete inputs (FC2)

– Read holding registers (FC3)

– Read input registers (FC4)

• Set

– Function code

– Field count

– Set starting address

> modread -t 10.1.1.1 -f 3 -n 5 -a 0

Register | Value

0 = 0

1 = 23

2 = 34

3 = 435

4 = 1



45

Modwrite

• Tool for writing data to a device

– Write single coil (FC05)

– Write single register (FC06)

– Write multiple coils (FC15)

– Write multiple registers (FC16)

• Set

– Function code

– Field count

– Set starting address

– Data



46

Control Demo

• I have a great MP3 collection to choose from

• And a Modbus enabled MP3 player

• Someone please choose a song



47

Spoofing

• Modbus has no authentication!

– Devices are usually black-box so cant use OS

– MITM, evil twin etc are all possible

– Usually configured with IP addresses not DNS names

• DNS spoofing rare

– ARP spoofing generally a free-for-all



48

Attack Detection

• Symantec Signature

– Severity: Medium

– This signature detects a Modbus TCP packet that exceeds the 
maximum length.

– An attacker creates a specially crafted packet longer than 260 
bytes and sends it to a Modbus client and server. If the client or 
server were programmed incorrectly, this could lead to a 
successful buffer overflow or denial-of-service attack.

– Response: Drop the connection with a TCP reset.

• http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asi

d=20676



49

DigitalBond Snort Signatures

• DigitalBond has produced a baseline set of signatures
– http://www.digitalbond.com/wiki/index.php/Modbus_TCP_IDS_Signatures

• The signatures can be broadly grouped in the following 
categories: 
1. Unauthorised modbus use - Authorised Modbus clients and 

servers are entered as variables in the IDS, and the signatures 
identify when unauthorised systems send requests with variable 
severity levels dependent on the request. 

2. Modbus Protocol Errors - these signatures will be triggered 
when an attacker is attempting to fuzz the protocol. 

3. Scanning - once a control system is deployed there are a 
number of errors and function codes that should be exceedingly 
rare unless someone is scanning a Modbus server. 



50

Bypassing Signatures

• Signatures only trigged with protocol id of 0

– Some devices don’t check and don’t care

• Protocol errors occur naturally

– But can be increased artificially to create noise

• List and code scans

– Can be slowed and randomised and slowed



51

Conclusions

• More importantly:

– Modbus is inherently insecure and obscurity does not save it

– Keep an asset inventory of Modbus devices

– Implement infrastructure controls to protect devices

– Ask vendors for security assessment results

– Perform security testing of devices

– Watch this space



52

The End

• Next steps

– The toolkit will be released progressively in near future

– All tools will be free (no source sorry �)

– Accepting liquid gold in exchange for pre-release versions

• Future research?

– Looking for research partnerships with device manufactures

– Lots of gaps exist

• Thanks to:

– Opal Software for donating a software license for research



53

Questions?



Daniel Grzelak [daniel.grzelak@sift.com.au]

Hacking Modbus Enabled Devices

SCADA Penetration Testing

RUXCON ‘08


